Inflated Steel Technology for Ultra-Lightweight Architecture

2022-06-15 16:53:03 By : Mr. Wei Zhou

We use cookies to enhance your experience. By continuing to browse this site you agree to our use of cookies. More info.

The Polish designer and architect Oskar Zieta, together with Philipp Dohmen, an architect at the Swiss Federal Institute of Technology in Zurich, created an engineering technique enabling the fabrication of lighter and less expensive steel products without compromising structural strength. The inflated steel structures could potentially revolutionize the design and construction sectors by creating innovative, customizable, and fully recyclable objects.

Image Credit: SimoneN/Shutterstock.com

Without a doubt, steel is the most important engineering and construction material that underpins almost every aspect of human life.

Today, steel is used in buildings construction, transportation, infrastructure development, and consumer goods manufacturing.

Steel is a versatile material that can be manufactured to fit a wide range of requirements, permitting the creation of structural elements with diverse shapes and properties.

The material also has decorative use in facades, interiors, and street furniture. Steel combines strength and flexibility that gives architects the freedom to create their most ambitious designs.

Engineers and designers are constantly seeking ways for the cost- and energy-efficient production of bespoke-shaped steel structural components. Oskar Zieta, a Polish designer and architect, and founder of Zieta Prozessdesign Studio, embarked on such a quest more than 15 years ago together with Philipp Dohmen, Zieta's colleague at the time at the Swiss Federal Institute of Technology (ETH) in Zurich.

During his Ph.D. studies at the Computer Aided Architectural Design department (which is part of ETH’s Department of Architecture), Zieta developed the concept behind an innovative steel forming process called FiDU (from German Freie Innendruck Umformung, or Free Inner Pressure Deformation in English).

The method enables the creation of three-dimensional objects of various sizes out of two-dimensional metal sheets welded together by using internal air pressure.

The method is relatively simple yet very efficient, and has the potential to revolutionize modern-day construction techniques. 

In the process, laser-cut sheets of one millimeter-thick high-strength steel are robot-welded together to ensure a perfect fit and accurate shape of the final product.

The welded sheets are then deformed by applying air pressure between the sheets. Depending on the material thickness and properties, the air pressure can be in the range of 0.1-50 bar.

The result is a solid but lightweight three-dimensional steel structure obtained through a minimum number of production steps and without expensive tools or molds.

The metal deforms as it inflates according to its natural characteristics, resulting in small variations and making each component unique, despite the identical initial design. Importantly, as Zieta explains, the welded steel templates can then be inflated anywhere, which makes this technology very flexible.

The inflated steel concept was first tested with the manufacture of a three-legged stool called Plopp, which Zieta designed and produced in 2008.

By perfecting the technology, the designer learned how to make complex and lightweight steel structures that can spontaneously deform (when inflated) into the desired final shape.

Image Credit: Zeita Studio/Youtube.com

Due to steel’s inherent strength and the innovative FiDU technology, the award-winning stool design (that weighs around three kilograms) can withstand a load of over two tons.

The design team sees opportunities that stretch far beyond furniture. With a background in architecture, Zieta focused his research on construction and architectural applications of inflated steel technology. The inflated steel pavilion built by Zieta in 2017, called NAWA, is a combination of art, architecture, and industrial research.

The project can be regarded as a 'manifesto' of FiDU technology. The shiny steel structure, built as part of Wroclaw's European Capital of Culture celebrations, has become a landmark on Daliowa island, one of the many islands in the Odra river that runs through the Polish city.

NAWA is an ultra-light and robust installation of 35 steel arches that form a gate-like bionic form that resembles a naturally growing sculpture.

The pavilion's dimensions are 7.5m x 10m x 11m with a total weight of only 11 tons. It was the first building-size construction that employed FiDU technology. The organic shapes of the arches are a result of a computer-aided design process and become apparent owing to the FiDU inflation process.

Such structures can be used as load-bearing elements and construction components, merging beauty and functionality. In addition, the computer-aided manufacturing process permits new ideas and designs to be implemented faster and at a reduced cost.

Besides the range of designer furniture, such as inflated steel tables, chairs, and stools, Zieta has also developed proof-of-concept designs of an ultra-lightweight steel footbridge and a low-cost wind turbine prototype.

Currently, Zieta's team is working on implementing FiDU in large-scale projects where steel architecture can be utilized in novel facade elements and ultralight constructions for industrial applications. 

The FiDU technology has the potential to offer massive savings in terms of materials and production costs, as well as greater sustainability of the industrial and architectural designs.

M. Johanson (2021) Inflatable steel furniture paves way for even lighter infrastructure [Online]www.stories.worldsteel.org Available at: https://stories.worldsteel.org/innovation/inflatable-steel-furniture-lighter-infrastructure-wind-energy-space-construction (Accessed on 15 October 2021).

Metalurgprom (2021) European designers have learned to inflate steel structures that could be a breakthrough in technology [Online] www.metallurgprom.org  Available at: https://metallurgprom.org/en/news/ukraine/8751-evropejskie-dizajnery-nauchilis-naduvat-stalnye-konstrukcii-chto-mozhet-stat-proryvom-v-tehnologijah.html (Accessed on 15 October 2021).

R. S. Aouf (2018) Oskar Zieta inflates steel to create Daliowa island pavilion in Poland [Online] www.dezeen.com Available at: https://www.dezeen.com/2018/07/23/oskar-zieta-inflates-steel-daliowa-pavilion-wroclaw-poland-technology (Accessed on 15 October 2021).

C. L. Damewood, (2021). Oskar Zieta’s Inflated Steel Sculpture Could Revolutionize Construction Technology [Online] www.dornob.com Available at: https://dornob.com/oskar-zietas-inflated-steel-sculpture-could-revolutionize-construction-technology (Accessed on 15 October 2021).

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Cvetelin Vasilev has a degree and a doctorate in Physics and is pursuing a career as a biophysicist at the University of Sheffield. With more than 20 years of experience as a research scientist, he is an expert in the application of advanced microscopy and spectroscopy techniques to better understand the organization of “soft” complex systems. Cvetelin has more than 40 publications in peer-reviewed journals (h-index of 17) in the field of polymer science, biophysics, nanofabrication and nanobiophotonics.

Please use one of the following formats to cite this article in your essay, paper or report:

Vasilev, Cvetelin. (2021, October 15). Inflated Steel Technology for Ultra-Lightweight Architecture. AZoBuild. Retrieved on June 15, 2022 from https://www.azobuild.com/article.aspx?ArticleID=8422.

Vasilev, Cvetelin. "Inflated Steel Technology for Ultra-Lightweight Architecture". AZoBuild. 15 June 2022. <https://www.azobuild.com/article.aspx?ArticleID=8422>.

Vasilev, Cvetelin. "Inflated Steel Technology for Ultra-Lightweight Architecture". AZoBuild. https://www.azobuild.com/article.aspx?ArticleID=8422. (accessed June 15, 2022).

Vasilev, Cvetelin. 2021. Inflated Steel Technology for Ultra-Lightweight Architecture. AZoBuild, viewed 15 June 2022, https://www.azobuild.com/article.aspx?ArticleID=8422.

Do you have a review, update or anything you would like to add to this article?

AZoBuild spoke with Kristian Ahlmark from Schmidt Hammer Lassen Architects about their ambitious new project Rocket&Tigerli, which will become the world’s tallest residential building with a wooden load-bearing structure.

AZoBuild spoke with Michael B. Lehrer from Lehrer Architects about the tiny home villages in LA that provide a creative solution to the issue of homelessness in the city.

AZoBuild talked to Peris+Toral Arquitectes, finalists for the EU Mies van der Rohe award, about their work 85 Social Housing Units project.

This article will provide an overview of bioengineered building materials, discussing materials, products, and projects that have been made possible due to research in this area.

With an increase in the pressure to decarbonize the built environment and build more carbon-neutral buildings, the reduction of embodied carbon has become of great importance.

AZoBuild talks to Professors Noguchi and Maruyama about their research and development of Calcium Carbonate Concrete (CCC), a new material that has the potential to cause a sustainable revolution in the construction industry.

AZoBuild spoke to Lacol Architecture Cooperative about their La Borda Cooperative Housing project in Barcelona, Spain. This project has been shortlisted for the 2022 EU Prize for Contemporary Architecture - Mies van der Rohe award.

AZoBuild talked to Peris+Toral Arquitectes, finalists for the EU Mies van der Rohe award, about their work 85 Social Housing Units project.

With 2022 now underway, excitement has built following the announcement of the shortlisted architectural firms nominated for the EU Prize for Contemporary Architecture – Mies van der Rohe award.

AZoBuild.com - An AZoNetwork Site

Owned and operated by AZoNetwork, © 2000-2022